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A brief summary of the results obtained in research sponsored by the

Naval Research Laboratory under Contract N00014-80-C-0802 is presented.

The research covered several problems in the area of spread-spectrum random-

access communications for fading channels. The results are applicable to

the Navy's intra-task-force communications network.
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SUMMARY OF RESEARCH RESULTS

Our work in spread-spectrum communications that was supported by this
contract focused on the performance of slow-frequency-hopped (SFH) spread-
spectrum communications. A variety of channel models were considered to
reflect varying degrees of amplitude fading and selectivity. Of primary
interest is the class of slow, nonselective, Rician fading channels in
which there are two components of the received signal: a non-faded or
direct-path component and a faded or scatter component. The scatter com—
ponent is ?ssumed to undergo slow, nonselective, Rayleigh fading in this
model, so that the Rayleigh fading channel is obtained as a special case
(no direct-path component). In addition to the received signal, additive
white Gaussian noise is present at the front end of the receiver, so the

non-faded additive white Gaussian noise channel is also obtained as a

.special case of the general model (no scatter component). The effects of

selective fading were also considered, especially frequency-selectivity
which produces intersymbol interference. Details of the various channel
models are described in Appendix A.

Several bounds and approximations for the bit error probabilitv in a
SFH spread-spectrum multiple-access system are presented in Appendix A and
in (1]-{3]. Both FSK and DPSK data modulation and selective and nonselec-
tive fading channels are considered. These results are very general in
nature and can be adapted to a wide range of systems and channel models.

A specific problem that can arise in a system like the intra-task-~
force (ITF) communications network is due to the possibility of a specular
multipath signal with a relative delay greater than the dwell time of the

frequency hopper. This problem, although not addressed specifically in




Appendix A, can be analyzed by the results developed in our research. The
results of Appendix A are applicable to a system in which there are K simul-
taneous SFH signals. If there are K' simultaneous transmitters and if each
signal produces one nonselective Rician faded component plus one specular
multipath component, then there are K= 2K' interfering signals. If the
relative delay of the specular multipath component exceeds the dwell time
then the bounds and approximations given in Appendix A apply with K= 2K',
In such a system there are K-1 = 2K'-1l interfering signals for each receiver.
Application of the results of Appendix A to such a system is illustrated
by the data of Table 1. The only reason for presenting numerical results for
this special situation is that perhaps larger values of K are of interest
than for a system without the specular multipath components. The results of
Table 1 are for the same model as described in Appendix A, and the notation
is exactly as used in Table 2 of Appendix A. The approximation PG given in
Table 1 is a new result (obtained after [4] was submitted for publication),
which we believe to be slightly more accurate than the approximation Fii)
described in Appendix A. Both PG and féi) are for channels with fading
which is slow relative to the hopping rate (case (i) described on page 10
of Appendix A).
The methods and results developed in Appendix A can also be applied to
determine the probability of error in a coded SFH spread-spectrum system.
For a fully interleaved system these results can be applied directly. This
is because the interleaving breaks up the error bursts due to the fading
and multiple access interference, in which case the bit error probability
is the performance measure of interest. Thus, for interleaved systems the
performance of various codes can be determined from the results given in
Appendix A and published data on the performance of the codes for the binary

memoryless channel.
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s Table 1. Bit error probability for nonselective Rayleigh
fading and specular multipath.
‘ . a) K =10 (K' = 5), q = 100, and Nb = 10
: E/N0 (dB) P Po P, Py
: 6 0.161 0.175 0.182 0.199
: 8 0.118 0.131 0.137 0.156
190 0.085 0.096 0.102 0.123
12 0.060 0.071 0.076 0.098
15 0.036 0.046 0.051 0.074
20 0.018 0.028 0.032 0.056
o 0.009 0.019 0.023 0.047
b) K =20 (K' = 10), q = 100, and Nb = 10
. &/Ny (dB) P Pq P, Py
6 0.153 0.187 0.193 0.230
8 0.115 0.145 0.151 0.192
10 0.085 0.113 0.118 0.162
12 0.063 0.089 0.093 0.140
15 0.042 0.066 0.069 0.119
20 0.025 0.049 0.052° 0.103
oo 0.018 0.041 0.043 0.095
¢c) K =50 (K' = 25), q = 250, and Nb = 10
E/N0 (dB) P Pe P, Py
6 0.157 0.188 0.191 0.227
8 0.119 0.147 0.149 0.189
10 0.088 0.114 0.116 0.158
12 0.066 0.090 0.091 0.136 ‘
15 0.044 0.067 0.068 0.114 .
20 0.028 0.050 0.050 0.098
L 0.020 0.043 0.041 0.090

Table 2. Bit error probabilities for uncoded and coded SFH
systems with nonselective Rayleigh fading.
(K =15, q = 1000, and Nb = 40)

E/No (dB) P, Py '.
14 4.0x 102 1.1x 107}
16 2.7x 1023 1.1X 1073 ‘
18 1.9x 107 1.7x 105, §
20 1.3X 10 4.0X 10 |
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For a system without full interleaving the bit errors are not indepen-
dent and thus the bit error probability does not completely describe the
channel performance. However, we have evaluated the performance of certain
Reed-Solomon codes with partial interleaving, and typical results are given
in Table 2. The approximation EA to the probability of error for an uncoded
system is compared with the bit error probability Pb for a system which uses
a (255,127) Reed-Solomon code with partial interleaving. Notice that for
values of E/No greater than 18 dB, the coded system gives several orders
of magnitude improvement in the bit error rate. Further work on the perfor-
mance of coded SFH spread-spectrum systems is in progress (primarily under
other sponsorship).

The data in Table 2 gives a comparison between the performance of uncoded
and Reed-Solomon coded systems. Another interesting comparison is the perfor-
mance of a Reed-Solomon coded SFH system for two different sets of assumptions
on the frequency hopping and interleaving: (i) no frequency hopping and no
interleaving vs. (ii) frequency hopping with interleaving of the code symbols.
The channel model that we consider for this comparison is the very slow,
nonselective Rayleigh fading channel. In case (i) we assume that the instan-
taneous power in the received signal is constant for the duration of the code
word, but in case (ii) the instantaneous power is constant for the duration
of a code symbol but (because of hopping and interleaving) the power levels
for different symbols in the same code word are independent. 1In Table 3

numerical values for the block error probability are presented for the (31,15)

(i1)
E

block error probabilities for cases (i) and (ii), respectively. The data

and (255,127) Reed-Solomon codes. The probabilities Péi) and P are the

is for a system with only one transmitter (K=1) in order to isolate the

effects of fading from the effects of multiple-access interference.




Table 3. Block error probabilities for a coded SFH
system with nonselective Rayleigh fading.

a) (31,15) Reed Solomon code

(1) (11)
R/NO (dB) Pp Pe B
-2 -5
20 8.29x 10_ 8.44x 10_¢
22 5.31x 10_, 2.50x 10_
24 3.39x10_ 5.92x 10_g
26 2.15x 10_4 1.21x10_74
30 8.63x 10 3.97x 10

b) (255,127) Reed Solomon code

3 (1) (i1)

&/NO (dB) Po Pp
15 2.85X 10_] 8.86 X 107
16 2.36X 107 1.50X 1072
17 1.90X 107 3.52X 1075
18 1.55X 1077 1.53x 1072,
19 1.25X10_; 1.65X 10_73
20 1.01X 10 5.62X 10




A significant area of progress in the random-access area under this
contract has been the design and analysis of retransmission control poli-
cies for a random-access broadcast channel (5}-[7], [9]. The policies can
be implemented in a distributed fashion. Analysis of delay and throughput
is provided in these papers using the concept of local Poisson approxima-
tion which is introduced in these papers.

Versions of the recursive retransmission control policies which are
relatively insensitive to the traffic statistics, and modifications which
reduce feedback information requirements are also reported in [5].

It is proven in [7] that the retransmission policies in [5] provide
stable throughput at rates of up to e-1 packets per slot. Moreover, a
general methodology for proving such stability results is provided in [7]
and the methods are also applied in [7] to prove a strong stability property
of G/G/1 queues which is of general interest for queueing network studies.

Even though the papers [5]-[7], [9] do not deal explicitly with a
spread~spectrum system, they were developed for spread-spectrum applica-
tions because these papers assume that channel feedback information is very
limited, which is characteristic of spread-spectrum systems. Indeed, in
the appendices of this report the traffic intensity vs. packet error prob-
ability tradeoff (Appendix B) and a possible implementation of recursive
retransmission procedures as in [5] (Appendix C) are each given in the
context of a FH-system such as the Navy's intra-task-force communications
network.

In Appendix D some results from [9] are summarized. 1In this paper
the delay/throughput tradeoff of a random-access system is studied under

the assumption of a very limited amount of feedback. It is found that




there is a potential for instabilities if the feedback information 1is
insufficient.

In [8] we developed a numerical method for finding the invariant
distribution for a class of Markov processes. The method is useful for
performance evaluation of certain random access strategies, as shown in

[10]. 1In Appendix E the method of [8] is outlined and some of the results

from [10] are summarized.
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I. TINTRODUCTION

Several communications systems currently being developed have the
following common features. Frequency-hopped spread-spectrum modulation is
employed with a hopping rate not greater than the data rate. Multiple-access
capability is required, because with high probability two or more terminals
will be transmitting simultaneously. During transmission the spread-spectrum
signals encounter severe fading, which causes reduced signal strength and may
produce intersymbol interference or other dispersive effects. These systems
are described in current terminology as slow-frequency-hopped (SFH) spread-
spectrum multiple-access (SSMA) communications systems with fading channels.

In this paper we present bounds and approximations for the average
probability of error for SFH/SSMA communications over fading channels. Two
important classes of fading models are considered: the class of nonselective
Rician fading channels--which includes the additive white Gaussian noise
channel and the nonselective Rayleigh fading channel as special cases--and the
selective wide-sense-stationary uncorrelated-scattering fading channel. The
data modulation is binary frequency-shift keying (FSK), but many of the results
apply to differential phase-shift-keying (DPSK) as well. Noncoherent demodula-
tion of the data is employed, partly because we do not require coherent frequency
hopping and dehopping. The communications network is assumed to be asynchronous;
that is, a given terminal makes no attempt to coordinate its transmissions with
those of other terminals. This may be due to the lack of an accurate timing
reference or because of the variation in propagation times among the different
communication paths in the network. The point here is that even if the trans-
mitters have a common clock they cannot adjust their transmission times to

provide coordinated arrival times at all of the receivers in the network.

[ SV S — S e emy e S g e A o
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In the analysis of SFH/SSMA systems there are two approaches to the

modeling of the frequency hopping patterns: general random-process models may

be employed or specific (deterministic) sets of hopping patterns may be con- %
sidered. The random-process models are often used in an attempt to match

certain characteristics of extremely complex hopping patterns which have very

long periods. Also random-process models serve as substitutes for deterministic

models when the communications engineer is given little or no information about

the structure of the hopping patterns to be used in the system. Both random é

patterns and a special class of deterministic patterns (based on Reed-Solomon
codes) are considered in this paper.

The results obtained in this paper are bounds and approximations for the
bit error probability. These results are useful for both uncoded FH/SSMA
systems and fully-interleaved coded FH/SSMA systems. For coded systems which
employ random-error-correcting codes, full interleaving is usually necessary for

satisfactory performance. We have also obtained results (similar to those pre-

sented in Section III) on the probability of error for FH/SSMA systems which :
employ certain burst-error-correcting codes and "partial interleaving", but this

topic is beyond the scope of the present paper.

A brief outline of the paper is as follows. The model for the SFH/SSMA
system 1s presented in Section II where our models for the various subsystems
and signals are described. The effect of nonselective fading on the probability
of error in a SFH/SSMA system is considered in Section III. A more precise
analysis 1s given in Section IV for the special case in which the channel
exhibits nonselective Rayleigh fading. Finally, selective fading is considered

in Section V.




. II. SYSTEM MODEL

The transmitter for the slow-frequency-hopped spread-spectrum signal
is shown in Figure 1. There are K such transmitters in the spread-spectrum
multiple-access system. The k-th data signal bk(t) is a sequence of

positive and negative rectangular pulses of duration T. The amplitude of

the g-th pulse for the k-th signal is denoted by bék) (1.e., by (£) -bz(k)

for 4T £ t < (4+1)T), and bf‘) is either +1 or -1 for each k and £. The
data signal bk(t) is the input to an FSK modulator, and the corresponding

output is
¢, (t) = cos{2m[f_ +b, (t)ale + ek(:)} )

where A i3 one-half the spacing between the two FSK tones. The signal
Bk(t) is the phase signal introduced by the FSK modulator; that is, if

k) _ -
bz m then ek(t) =0 o for AT € t < (4+1)T where ek,m is the phase of

k,
the tone at frequency fc +mA for m = +1 or m = -1,

The FSK signal is then frequency-hopped according to the k-th hopping

pattern fk(t) which is derived from a sequence (f;k)) = ...,fft),fék),f{k),...

according to

(k)

fk(t) = fj

> JTh =t< (J+1)Th- 2)
The parameter Th is the time between hops (also called the dwell time).

For slow-frequency-hopping T, is an integer multiple of T. The frequencies
h

f;k) are all from the set S = {vn: 1€ n £ q} which is ordered such that

v, <:vn+1 for each n. Let A' be the minimum spacing between the frequencies
in the set S, and let N, 4 Th/T be the number of data bits per hop.
The band-pass filter shown in Figure 1 removes unwanted frequency

components present at the output of the multiplier. The signal at the
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output of the filter is

8, () = V2P cos[2nE, (t)t + @, (B)], 3)
where

£ (®) = £, + b (£)A + £, (F) %)
and

() =8, ) + a (t). 5)

The signal ak(t) represents the phase shifts introduced by the frequency
hopper as it switches from one frequency to another. Accordingly, ak(t)
is constant on the time intervals that fk(t) is constant. ILet a;k)
denote the value of ak(t) on the interval [jTh,(j+1)Th).

The quantity P that appears in (3) is the power of the k-th signal
at the receiver in the absence of fading. 1In order to account for fading,
we will multiply P by a suitable factor to obtain the average power in
the received signal. For simplicity we have assumed that the signals
sk(t) all have the same power. However, as we will point out later, we
obtain error probability bounds that are valid even {f the power levels
are not equal.

Since we are considering an asynchronous multiple-access system, we
allow an arbitrary time delay Tk for the k-th communication link (1< k<K).
Thus the received signals are sk(t-vk), 1< k€ K. For the random hopping
patterns that will be considered in subsequent sections, it is sufficient

to consider time delays modulo T In order to allow for the possibility

h.
of deterministic periodic hopping patterns, we consider time delays modulo
NT}, where N is the period of the patterns for deterministic hopping

patterns or N=1 for random hopping patterns. Thus we may restrict




attention to time delays in the range 0 < e < uth. Similarly we are
only concerned with phase angles modulo 2n, so we may restrict attention
to phase angles in the interval [0,2r].

The analysis presented in this paper does not account for adjacent
channel interference in the frequency-hopping system or for interference
between the two FSK tones of a given signal. Instead we are primarily
concerned with multiple-access interference and the effects of fading such
as intersymbol interference and reduced signal strength. In order to
focus on multiple-access interference and fading, we made certain simpli-
fying assumptions concerning the frequency spacings A and A'. It is enough

for our purposes to have

At >> 4 + Tt 6a)

and

A>> 1l ©6b)

However, it is possible to relax these conditions somewhat, expecially for
nonselective fading. For example if the fading is nonselective then it is
sufficient to replace the constraint A >> T-1 by the condition A = m/2T
positive integer m (the case m=1 is of greatest interest). In the
absence of time-selective fading our results are valid if A' is about
30 + T-l) or larger, and they are likely to be fairly good approximations
even 1f A' = 2(A + T-l). However, frequency dispersion can expand the
signal bandwidths so that A’ >> A + T-l is needed for time-selective
fading.

Under our assumptions, the frequency band that contains the signals

lk(t) is approximately the band from fc +v, = A to fc + vq + A. The

1
center of this band is at frequency fé - fc + i(vq-vl). The (one-sided)




bandwidth W is approximately vq - vy + 2A. Under our assumptions
W vq -V, 2 (g=1)A'.

In the absence of fading and noise the received signal is given by

K
s(t) = kil sk(t -'rk). ¢

We focus our attention on the receiver for the i-th signal, and in doing
so we may select the time reference such that L™ 0. The variables T
are then delays (modulo NTh) relative to this time reference.

The receiver for the i-th signal is shown in Figure 2. The received
signal 3(t), which is a faded version of s(t), is the input to the first
band-pass filter. This filter has center frequency approximately fé and
bandwidth approximately W so S(t) is passed without distortion. This
filter is followed by the i-th dehopper which is synchronized in frequency
and time to the i-th frequency-hopping signal fi(t). The dehopper
introduces a phase signal Bi(t) which is analogous to the phase signal
ai(t) introduced by the frequency hopper. The phase signal.Bi(t) is

constant during the time intervals between hops (i.e., when fi(t) is

constant). The constant value of Bi(t) for jTh s t< (j+1)Th is denoted by
o ®.

The time delays, phase angles, and data symbols are modeled as
mutually independent random variables each of which is uniformly distributed
on the appropriate set (cf. [4] or [6]). The random time delays are the
random variables ' The random phase angles that are of primary interest
}k), and B;i). An important feature of our model for asynchronous

spread-spectrum multiple-access systems is that addition of phase angles

are ek,m’ o

is modulo-2mr addition. This feature is critical to our asgsertions concerning
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the distributions and the statistical independence of the phase angles (the

basis for these assertions is given on pp. 159-160 of [6]).

t The output of the dehopper is then passed through a band-pass filter
which is designed to remove certain unwanted signals such as the double-
frequency components of the i-th signal itself, the sum and difference

frequency components due to the other K-1 signals (except, of course, those
that happen to be at the same frequency as the i-th signal), and the
thermal noise that is outside the frequency band occupied by the i-th
signal. The bandwidth B of this band-pass filter is less than A' but
usually larger than 2(A + T V). If (A + T ') << B < A' then the thermal
noise present at the output of the band-pass filter which follows the
dehopper has a bandwidth larger than that of the FSK demodulator. This
simplifies the analysis of the demodulator.

As shown In Figure 2 the FSK demodulator has two branches. Each branch

forms a statistic ﬁi where m=1 corresponds to the upper branch and m= -1
s corresponds to the lower branch. Each of these two branches has two
components. In the in-phase component the signal is multiplied by
cos[2ﬂ(fc + mA)t], and the quadrature component it is multiplied by

sin[Zﬂ(fc + mA)t].

1)
£
in-phase components of the two branches are given by

Consider the reception of the data bit b The outputs of the .

G+)T
2y o ™ ILT ry(t)cos[2m(f +mh)t]dt &)

for m = + 1, where rd(t) is the output of the band-pass filter which

» follows the i-th dehopper (i.e., rd(c) is the input to the i-th FSK

demodulator). Notice that in general Z.a depends on both £ and {i.




However, i1f the random hopping patterns are stationary and identically
distributed and the fading process is stationary and not frequency

selective, then the distribution of the random variable Zc o will not depend
’

on either £ or i. 1In case the hopping patterns are deterministic or the
fading is frequercy selective then we provide upper bounds on the
probability of error which are independent of £ and i. The outputs of

the quadrature components of the two branches are denoted by Zs o for
’

m = + 1. The random variables Zs o’ which are defined by (8) with

cos[+] replaced by sin[-], have the same properties as Z .
2




I1I. PERFORMANCE OF FH/SSMA SYSTEM WITH NONSELECTIVE FADING

The channels considered in this section are the nonselective slow-
fading channels. For the frequency-hopped spread-spectrum system described
in the previous section this means that the signal at the input to the

first band-pass filter in the i-th receiver (see Figure 2) is

K

r(t) =n(t) + T vy (t-1.), &)
k=1 K k

where for AT £ t < ({+1)T the signal yk(t) is given by
¥ (£) = J2P Al(‘k) cos [Zn'fk(t)t +5k(t) +¢J§k)]. (10)

The thermal noise n(t) is white Gaussian noise with spectral density !

3N Notice from comparisons of (9)and (10) with (7) and (3), respectively,

0‘
that yk(t) is a faded version of sk(t) and, in the absence of noise,r(t) is

K
k=1 Tk

The amplitude of the fading signal yk(t) during the time interval

AT € t < (£+1)T is represented by a nomnegative random variable Aék)

the phase shift due to the fading is denoted by @fk). In this section the

() =X (t'-Tk) which is a faded version of s(t).

, and

only assumption that we make concerning the signal amplitudes is that they
are constant during the data bit interval. The sequence of amplitudes

1
(A:k)) = ...,Aft), Aék), Afk), .+. May be any stationary random sequence. :

In particular we place no restrictions on the statistical dependence of

amplitudes in different data bit intervals. Consider the set

{A(k) :JN_ S 4 < (§J+1)N.} of amplitudes for the data bits that are
g % b

transmitted during the j-th hopping interval [JT, , (J+1)T This interval

e GFDT).
contains the data bits bék) for ij <2 <'(j+1)Nb. Among the cases of

MR Sl o ot el A KA = I Bt & b M 2 v 4 ewann e, hn - ‘,._.1.‘ o e
-
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same hopping interval and (ii) Aék) and A

) . Aék) for all £ and m in the
(k)

m

interest are the two extreme cases (i) A
are independent if £ # m

but £ and m are in the same hopping interval. Case (1) corresponds a
system with no interleaving and a channel with slow fading relative to the
hopping rate. An example of case (ii) arises in a system which is fully
interleaved (e.g. if a random-error-correcting code is to be employed).
Although these are the two specific cases of greatest interest, there is
no need to restrict attention to such special cases in this sectiom.
Similarly, we impose no restrictions on the phase sequence Ggék)); all
that is required is a constant value for the phase during the data bit
intervals. Notice from (1)-(5) that for 4T £ t < (£+1)T the phase of the

signal in (10) is given by

0, =0, o+ ol + a0, (11)

where j is the integer part of L/Nb. Under quite general conditions the
phase @Ek) is uniformly distributed on [0,2r] because the addition in (1l1)
is modulo-2m. For example, it is enough to assume that one of the phase
angles which appears on the right-hand side of (l11) is uniformly distributed
and that they are mutually independent (see pp. 159-160 of [6] for the
rationale for this statement),

There are two different phenomena which contributed to errors in the
system under consideration. First, even in the absence of noise and fading,
errors may occur in a frequency-hopped spread-spectrum multiple-access
system when a signal is hopped to a frequency slot that is occupied by
another signal. Whenever two different signals simultaneously occupy one
frequency slot we say a hit occurs. Second, even in the absence of hits,

errors may occur due to the fading and additive noise. The first step in
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analyzing the overall probability of error is to evaluate the probability

of a hit for various types of hopping patterns,

A. Probability of a Hit

Consider as before the i-th receiver during reception of the £-th
data bit. For a nonselective fading channel we say that a hit from the

k-th signal occurs du:ing the g-th data bit {if

£ (T = £ () (12)

for at least one value of t in the g-th data bit interval [4T, (2+1)T).
As pointed out in Section II, we can let N=1 in considering statiomnary
random hopping patterns. It follows that the probability Oik) of a hit
from the k-th signal during the g-th data bit interval does not depend
on ! for such patterns. If the K hopping patterns {(f}k)) :12 ks K}
are also mutually independent and identically distributed then 0}1‘) does
not depend on k either, and hence we denote it by & for such patterns,
We first consider two different models for stationary random hopping
patterns and give the value of & for each case.

Suppose the random process (f(k)) is a stationary Markov process with

h|
transition probabilities given by

el = vl v = @ (3)

for 1€ n<q, 1< r%q, andn # r. It follows that for these patterns

(k) (k)
P(F,7 = £, ) =0 (14)

and hence
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0-%(14——1-) . (15)

M

Because of (13) the process (f;k)) is a random process with first-order

distribution given by

P(fj(k) -v)=q! 1sasaq (16)
1f instead of (13) we consider random hopping patterns for which f;ti
is independent of f;k) and the distribution of f;k) is given by (16) for
each j, then (14) should be replaced by
k) _ (k) _ -2
PE =5y ) =a (17)
and thus the probability of a hit is
e=in+2a-iy. (18)
q N q
Notice that
esia+dy (19)
TN
and if q is large then
emia+dy (20)
T N

(cf. equation (15)). Thus for large q these memoryless hopping patterns
give approximately the same probability of a hit as the first-order Markov

patterns.

R e A R
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In general for a set of deterministic hopping patterns the probability
Gfk) depends on both k and £. One set of deterministic hopping patterns that
has very good properties is derived from a Reed-Solomon code, so we refer to
it as a set of Reed-Solomon (RS) patterns [7]. Given a prime number q of
frequency slots, the particular set of RS patterns of interest here consists
of N = q-1 sequences of period N (of course we can always choose a subset if
fewer patterns are needed). Each sequence is nonrepeating;
that is, for each sequence (fj)’ 6(fj’fn) =0 forn¥ j and 0SS n < N-1,
where

§(u,v) =
0 usv . (21)

The property of RS patterns that is of primary importance here is that for

any two patterns (f(k)) and (fgi)),

]
N-1
£ 6™ ey < (22)
n=0 n i

for each j. Property (22) 1is actually valid for any set of nonrepeating

patterns.

Since 7, is uniform on [O,NTh] for k ¥ 1, then it follows from (22) that

T, +T
(k) T | 1, 1 1
¢, <@ o a+ —Nb) o (1+N—b) . (23)

Actually (22) implies the stronger statement that either Gfk) = 0 or
Oik) =& . Since the number of frequency slots q is larger than the
period N = q-1, then it is possible to choose the hopping pattern (fgk))

such that ng) = 0 for Ny different values of £ in the range 0 < £ < NN, .




Notice that for large q

@ q (1+Nb) (24)

is a good approximation for the upper bound (cf. (15) and (20)).

Of primary interest for our subsequent analysis is the probability

~

)

the g-th data bit interval. For stationary random patterns 61 does not

of one or more hits from the K-1 signals (corresponding to k ¥ i) during

depend on £ so we denote it by &. 1If the patterns are also mutually

independent and identically distributed then
$=1-qa-ft, (25)

where € is the probability of a hit from a given signal. For the first-order

Markov patterns (25) and (15) imply
=1-1{1-2a+iynxtl, (26)
q Nb

If the patterns are sequences of independent random variables (i.e.
memoryless patterns) satisfying (16) then
6=1-0-n+la-Hkt, 27
q Nb q
Next we consider the probability 9‘ of one or more hits in the £-th

data bit interval for deterministic patterns. Since the random variables

Tis k # 1, are mutually independent, then for any deterministic hopping

patterns

K
8,-1- rkr_ll n-en{ . (28)
b




For RS patterns (23) implies

32 <2 4 1-101-0 ]K-l =1 -1{1- E%T (1.p%;)]K-1 , (29)

where the symbol-a is used to denote an upper bound. Notice from (27) and

(29) that for large q

om1-11- zll-(ubl‘—)}“'l (30
b

for the sequences of independent random elements and the RS sequences.
Notice from (26) that the expression given in (30) is the exact value of é
for the first-order Markov patterns.

B. Bounds and Approximations for the Probability of Error

For a nonselective fading channel the bit error probability Pe P in
b4
a slow-frequency-hopped spread-spectrum multiple-access communications system

can be written as

~

P = Po(l -OL) + P1,£ @, , (31)

e, L

where Po is the conditional probability of error for the 4-th bit given that
there are no hits and Pl,t is the conditional probability of error for the
L-th data bit given there is at least one hit. Notice that P0 does not
depend on £. In general Pl,l depends on £ but, as will be seen from the
numerical results, it is sufficient for many purposes to use the bounds

< <
0= Pl,z < k.
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Recall that for stationary random hopping patterns 51 does not depend
on { (and hence it is denoted by 5). For RS patterns 5& depends on { but its
upper bound 5 given by (29) does not. Hence for all of these patterns we

have the lower bound

A P
Pe’L 2p = Py(1-8) (32)
and the upper bound
4 5 2
Pe,},SPU PL+350=PO+(95-P0)0 33

where & is given by (26), (27), or (29), depending on which type of hopping
patterns are employed. The lower bound is the same as we previously presented
in [{5], but the upper bound of (33) is a slight improvement of the upper

bound presented in [5].

It is tempting to use Pe,z 2 P0 in placerf (32), and we certainly
believe this tighter lower bound to be valid for independent time delays,
data streams, and hopping patterns. Under these conditions it is
intuitively clear that mmltiple-access interference cannot decrease the
average probability of error. However, the lower bound of (32) has the
advantage that it holds under more general conditions (such as for dependent
time delays, data streams, and hopping patterns).

The bounds given in (32) and (33) are valid even 1f the power levels are
not the same for the various signals or the hopping patterns are statistically
dependent. As might be expected, the imposition of additional restrictions
on the system leads to more precise results. In Section IV we present such
results for a more restrictive channel model. However, even with the full

generality of the nonselective fading channel model considered in this

section, we can improve the lower bound and obtain a useful approximation

1f we consider equal power signals and add certain constraints on the

* . - M . B R et ol o SAPE N -




17

hopping patterns and the binary data streams. The hopping patterns are
assumed to be stationary, mutually independent, identically distributed random
patterns, and the data sequences are stationary, memoryless, independent
random sequences with distribution given by P(br(lk) =m) =% for m=+1 and m=-1.

The lower bound can be improved for such systems by providing a nonzero
lower bound for the term Pl,zéz of (31). One such bound is obtained as follows.
Consider the conditional probability of error in the L-th data bit given a
"full" hit from the k-th signal (i.e., given that (12) holds for all t in
[4T, (A+1)T)) and given the k-th signal transmits -béi) for the two consecutive
bit intervals of interest. This conditional probability of error is equal to %.
The conditional probability of a "full" hit (given a hit has occurred) is not

smaller than (Nb-l)/(Nb4-1), and the probability of two consecutive transmissions

i

of a particular tone is %. Finally, we use the fact that (25) implies

é, = ®-1PQ-9)X2,

which is just the statement that the probability of one or more hits is not less

than the probability of exactly one hit. From the above we conclude that

~ (Nb-l)

Wb k-2
1,45 2 S+ Rk-1)#@1-8)" " ,

P

so that the improved lower bound is
(N, -1)

~ A b K-2
Pe,z 2 P, =P + W)(K-I)O(l -&) . (34)

We use tilde (™ ) to denote bounds and approximations which are valid for the
restricted class of systems only (i.e., equal power signals, memoryless
independent data sequences, independent hopping patterns).

An approximation which is valid under the same conditions is




— o= 0N
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P, ~B, 4 P+ ¥ (4P ) K-1)0(L -k 2 (35)

e,

This approximation is very accurate whenever q/K is large because it is
based on the assumption that the probability of a multiple hit (i.e. hits
from two or more signals in a given data bit interval) is negligibly small
in comparison to the probability of a hit from only one signal.

Comparisons of the bounds and the approximation are given in Table 1 for
various values of PO’ K, q, and Nb' The hopping patterns are the first-order
Markov patterns for the data in Table 1, but in view of (30) the results
would not be significantly different for the other patterns described above.

C. The Nonmselective Rician Fading Channel

The bounds and approximation given in (32)-(35) can be
applied to any particular nonselective fading channel by substituting the
appropriate expression for P0 in these results. In this section we consider
the Rician nonselective fading model in which each transmitted signal results
in a received signal that is the sum of a nonfaded version of the trans-
mitted signal and a (nonselective) Rayleigh faded version of the transmitted
signal. The difference in the propagation times for these two components
is sufficiently small compared with the data bit duration T that the overall
channel is nonselective. This model is discussed in [9] where the nonfaded
component is called the fixed or specular component and the Rayleigh-faded

component 1s called the random or scatter component. In some applications

the nonfaded component arises from a direct path between the transmitter

and the faded component arises from a reflection.

o




a)

b)

c)

Table 1.

K =15, q = 1000, and Nb = 10

P

Lower bounds, approximation, and upper bound
on the probability of error for a FH/SSMA

system.

P

P

¢ L L
0.100 0.098 0.100
0.050 0.049 0.051
0.030 0.030 0.031
0.020 0.020 0.021
0.010 0.010 0.011
0.005 0.005 0.006

K = 15, q = 100, and Nb = 5
P0 PL PL
0.100 0.084 0.096
0.050 0.042 0.054
0.030 0.025 0.037
0.020 0.017 0.029
0.010 0.008 0.020
0.005 0.004 0.016

K = 25, q = 250, and Nb = 20

P0 PL PL
0.100 0.090Q 0.100
0.050 0.045 0.056
0.030 0.027 0.037
0.020 0.018 0.028
0.010 0.009 0.019
0.005 0.005 0.015

A U
0.103 0.106
0.053 0.057
0.034 0.037
0.024 0.027
0.014 0.017
0.009 0.013

PA PU
0.128 0.162
0.081 0.120
0.063 0.103
0.054 0.095
0.045 0.086
0.041 0.082

PA PA
0.118 0.138
0.070 0.093
0.051 0.075
0.042 0.066
0.032 0.057
0.027 0.053
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The amplitude S of the sum of the two components of the received signal
is a random variable with a Rician distribution (see (8] or [9]). Since we
are interested in the conditional probability of error given there are no
hits, we can assume in all that follows that only the components of the
i-th signal are present at the i-th receiver (during the data bit interval ]
under consideration). Let p be the normalized bit energy to noise density
ratio, so that 82p is the actual received energy to noise density ratio.

Hence for noncoherent FSK the probability of error given S = a is % exp(-%azp).

For the Rician channel the density function fs for the amplitude S is

£ (a) = (a/crz)exp[-%(az+a'2)/02}10(a a/o?) (36)

for a > 0, where az represents the strength of the nonfaded component,

202 is the expected value of the strength of the faded component, and Io
is the zero-th order modified Bessel function. The average probability of

*
error for noncoherent FSK is [9]

> 2
Py = fo % exp(-% a’p) £5(a) da

- expl-k o’/ % + 1)} ) 3an
2(02p +1)

If & denotes the average energy per bit in the received signal then
43 - (w2 2
A 8/N0 @ + 207)y . (38)

Let yz denote the ratio of the power in the faded component to the

power in the unfaded component; that is, yz = 2cz/a2

*Corre:ponding results for binary DPSK are obtained by replacing o
by 2p in (37).
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Then we can write

&’ + 1)
'yzA + 2('y2 +1)

P, = exp{-A/[YzA-FZ(y2+-1)]} . (39

Two limiting cases of interest are 02 = 0 and az = 0. If 02 =0 (yz = 0)
then there is no faded component, and the channel is just an additive white
Gaussian noise channel. 1In this case A = azp, and the probability of error

reduces to

Py = % exp{-} A} . (40)

If az = 0 the channel is a nonselective Rayleigh fading channel, A = 2020,

and the probability of error is

(41)

An examination of (39) as a function of yz shows that for y2 = 10 the

probability of error for Rician fading is nearly the same as for Rayleigh

2

fading. For example, if A is 12 dB then P, is 1.81 X 10-2 for vy~ = 0,

0
4.41 x 10”2 for y% = 0.1, 4.53 x 1072 for y> = 1.0, and 5.58 x 10"> for

2

yz = 10.0. The value of P, for Rayleigh fading (yz = ®) is 5.60 x 10 °.

0
In order to apply (36)-(41) to the slow-frequency-hopped spread-spectrum
multiple-access system, consider first the expressions (9) and (10) for the
received signal. The amplitudes Aik) are random variables with a density
function of the form given in (36). In general the parameters o and ¢ may
depend on 1, in which case A and ¥ also depend on i. The probability P

0

then depends on 1 and is given by (37) with o and ¢ replaced by oy and oy

or by (39) with y and A replaced by Yy and Ai' It follows from (9) and (10)

that the parameter p s given by p = PT/NO.




The next step is to substitute for Po in (32)-(35) using the expressions

(37) or (39). If P, depends on i the bounds of (32) and (33) are valid, but

0
of course they will also depend on i. Notice that if o and ¢ depend on 1,
then the average power in the received signal also depends on i. That is,

the signals are not required to have equal power. The approximation given

~ o and

in (35) is also valid even if P ‘

depends on i, provided that «

0 k

ck~ ai for all k.

In Figure 3 the approximation EA 0

by the expression in (39), is shown as a function of A = §/N0 for various values

, which is given by (35) with P, replaced

of YZ. For the data presented in Figure 3, the values of ¢ and ¢ (and

hence y and A) do not depend on i. Additional numerical data can be obtained
from Table 1 by evaluating Po from (37) or (39). Notice that for Rayleigh

fading with §/No less than 20 dB the value of Py is less than 0.01. From Table 1

we see that for PO‘S 0.01, the value of P is always less than iEA and the value

U
of }A is always less than Z%L for the values of K, q, and Nb considered in
Table 1. For K = 15, q = 1000, and Nb = 10 we see that for Po < 0.01, we
always have E’AS 1.2 %L and P < 1.25 EA’ Thus, for Rayleigh fading or

Rician fading with yz 2 1, the bounds and approximations given in this section
are sufficiently accurate for the design of slow~frequency-hopped spread-
spectrum multiple~access systems. Further evidence of this is given {n the

next section.
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1V, NONSELECTIVE RAYLEIGH FADING
In this section we present a more exact analysis of the effects of
multiple-access interference and nonselective fading for the special case
in which the fading is Rayleigh. This analysis provides a more accurate

approximation and a tighter upper bound for the probability of error than

is obtained by specializing the results of Section III to Rayleigh fading.
The system and channel models are as presented in Section III, and the
received signal is as given in (9) and (10).

Since we are considering only Rayleigh fading in the present section, the
random amplitudes Agk) have a Rayleigh distribution. The density function

for Aék)

is given by (36) with o = 0 and ¢ = S In general the second
moments My & Zzi are different for different signals. For the analysis
presented in this section we assume that the fading for different signals
is statistically independent. Stated precisely, the requirement is that

(1),A(2),...,A(K) are mutually independent for any choice of £.,4.,...,4,.
1 LZ ZK 1*72 K

The starting point for the analysis of the receiver is (8). Since in

Ay

practice fc >> T-1 for a spread-spectrum system, the high frequency terms
in the integrand of (8) may be ignored. The output of the integration at

the sampling instant is then given by

- E (k,1)
zc,m Dc,m + @/ T ;ii Ic,m + Nc,m : (42)

The first term Dc o is the component due to the signal si(t)' If the

]

transmitted data bit is b{i) for \ = ij-kp then

be.m = @/ a6 mpcosto, +alt)-p P 4a)y 43)

Since the component is the output of the integrator in the absence of

multiple-access and channel noise, it is called the desired signal component.
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The multiple-access interference Iék‘;‘i) from the k-th signal depends

upon the delay v, . For convenience let £, = s /TJ and n, = | (7 k- 4T Y/ 1,

where lu] denotes the integer part of the real number u. Then Ic(:kmi) can
be expressed as
(k,1) (k)
Iem = d“k)[AL( S 1o mIeos ¥ (hom) + Ay @y Uhomdeos ¥ (hy,my) ]
(44)

for 0 < n, < p. The following expressions define the various terms in (44).

First we have

) = 8655, 65D %5)

for 0< g < N. Second, if L(n) = (J -zk)Nb+p-n then

e (4,m) = ¢ (bél(ct)ﬂ_l),m) [t - 4T, -0T1/T. (46)
and
e,(£,n) = s(b“(‘)),m)((ml)r -t +AT 1T . 47)
Finally, Lf b{‘:t)&l) = ' and b{‘z)) = " then
ORI N RIS LIC L UCR VA LR LN >

and §"(4,n) is given by (48), with m' replaced by m" and L(m+l) replaced

by L(n). For p < n < Nb equation (44) is replaced by X

Ié"‘;‘i) =d(L +1)[ﬁ( +1) l(lk,nk)cos"(j l’nk) +A'L( ) Z(Lk nk)COS"'(L +1 n‘k)]

49

The only remaining case is n =P for which we have

1 (e )
c,m

=Wy DATD e (b apIcosy (4 +1,) + A4 IATE) o) (4 PIcoR " (4, ,B) .

(50)




Notice that if we set Aé%&) = 1 and Qé%;) = 0 in the above expressions,

then we obtain expressions for the in-phase components of the desired signal
and the multiple-access interference for a system with an additive white
Gaussian noise channel.

The remaining component of Zc o is the component Nc o which is due to

the channel noise process n(t). It is easy to show that Nc o is a zero-mean
bl

Gaussian random variable with variance NOT/16.
The quadrature components are defined by expressions which are analogous

to (42)-(44). 1In fact Zs o and Ns a 3%e defined in the same way as above, and
»

the only change that must be made in the definitions of Ds,m and Ié?;i) is
that cos(¢) should be replaced by -sin(+) in (43), (44), (49) and (50).

We next consider the average probability of error where the average is
computed with respect to the phase angles, time delays, and data symbols.
We start by assuming that the transmitted data bit is b{i) = +1 where

A= ij+p as before. Also the probabilities and expectations below are all

conditioned upon the data sequences (b}k}) and time delays Ty- Form = +1 or -1,

let oz m and oi m be the variances of the in-phase and quadrature components
] b
ZC o and Zs m respectively. Since, as we discuss below, these components are
b ’

Gaussian random variables with equal variances, the probability of error is

given [8, p. 587] by

- 2 c2 )-1
P c,-1

2
e cc,-l(cc,l+ (1)

for slow nonselective Rayleigh fading and noncoherent FSK detection. Under
the assumptions about the fading model that were made above, the desired

signal component Dc 1 is a zero-mean Gaussian random variable with variance
y

(PT2/16)u . Also notice that D = 0,
i c,~1




In order to proceed further in the analysis of the multiple-access

interference, we need to consider the nature of the statistical dependence

(k) (k) (k) (k)
between AL and AL+1 and between Qt and §L+1 for 4 and 4+1 in the same

hopping interval. These are the random variables which describe the fading

during adjacent data bits. We consider the two extreme cases described in

&) _ (k)
) A1

whenever { and £+1 are in the same hopping interval and (ii) the

Section I1I: (i) the fading is constant in the sense that and

W | 0
) LI

fading is independent for adjacent data bits in the same hopping interval.
Under our assumptions, the multiple-access interference component

Iék;i) is a zero-mean Gaussian random variable with variance % uﬁsi(k,i). For
t

constant fading, as described by case (1) above, we have
2 2
on(ks1) = d(4 ) [eg (b o) +ey (g, ) ] (52)
for 0 < 0 <p,
o2 (k,1) = A, +1) (e (b an) 12 + d(4) (e, by on )12 (53)
m' X 1% ™ K’ %2 Yok
for n =P, and
o2, 1) = At F1) (e (hyom) + ey (hom) 1 (54)

for p < n < Nb' For independent fading, as described by case (ii) above,

we have
2 2 2
on(,1) = d){le; (4 ,m)1" + [ey (4 ,m)17) (55)

2
for 0= n, <p. If n = p, cm(k,i) is given by (53), and for p < n < Nb

o2(k,1) = a1 (e, Uyn) 1 + ey (56)

USRI
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[ V]

L |

Because of the independence of the fading for different signals, the random

i variables I(k’i) are independent when conditioned on the data bits and time

l ©
delays. As a result

o2 = (PT2/16){6(1,m)p.1 + Z u-kcz(k,i)] + NoT/16 . (57)
c¢,m kél 0
By symmetry we see that % m =% . Thus (51) can be written as
? ?

@ te T wuit o (e,
k#i
P = e a1 1 2 ) (58)
1+2CENY ™+ T gy (o7 (i) 40706, 1))

where § = uiPT is the energy per bit for the received signal (in the absence
of multiple-access interference).

In order to evaluate the average probability of error Fe’ we must average
the expression in (58) with respect to the time delays and data symbols. This
is of course a8 difficult computation since it involves the evaluation of K-1
dimensional integrals. However we can obtain an approximation ?A and an upper
bound FU which are relatively easy to compute. This is accomplished by

observing that Pe depends on Ty only through tk’ zk and 0 where

tk = (Tk-LkTh-nkT)/T. We can thus obtain a discrete approximation to the 4

integral with respect to te by approximating the uniform distribution on (O0,1]

by the discrete distribution with probability mass 71 ae points i
1 3
1

J-I,ZJ- ,...,(J-l)J.1 and probability mass (2J)-1 at the end points 0 and 1.

We find that for the first-order Markov patterns and constant fading (case (i)) X

Ploy(e,1) = 397} = p,, 05353, (59)
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where the quantities pj are defined completely by the fact that their sum

is 1 and

(2Jq)'1(1+Nb‘1), i=1,2,...,31,

Py = (60)
@ tash + eota-xh, gea.

For independent fading (case (ii))
ploge,t) = 357} =y, 0%y, (61a)
Plogtt) = 132+ @-0" 1™ =g, 05 4s33, (61)

where pj and qj are defined by

@ ta+sh, y=1,2,...,0-1,
Py = , (62a)
AT Nl 3 =J,
@ ta-xh, §=1,2,...,0/21,
q = (62b)
wota-xh,  §=u2,
and
3 3/2
Pg=1-Z p,-Z gq,. (62¢)
0 j-l j j-l j

In (61) and (62) we assume J 18 an even integer.

An upper bound can be obtained as follows. The conditional probability

of error P, glven by (58) is not convex in e (L<k<K, k¥1). However
if we upper bound the sum of squares of (53) for case (1) or of (55), (53),

and (56) for case (11) by the square of the sum, the upper bound on Pe
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becomes a convex function of the tk's. We then obtain a discrete approximation
to the integral with respect to t, as for ii . The upper bound i& is the same
for cases (i) and (ii) and the distribution of Gm(k,i) is given by (59), where

the pj are defined by ‘

-1 -1

GI)TA+ND j=1,2,...,3-1, i
Pj = (63)
a+iheotash, -

A similar approximation and upper bound can be obtained for the sequences

of independent random elements.

Finally we note that in order that the approximation and bound presented
in this section be tight and computationally efficient we need to assume
that M = By for all k # L. If this is not the case, we can still work with
ui = m:x{uk}, but the approximation and the upper bound obtained above are

not expected to be very tight, so that it might be preferable to work with the

bounds suggested in Section III which are not affected by the different power

T T L s WP R PNV .

levels.

In Table 2 the approximation obtained in this section is compared with
the improved lower bound, the approximation, and the upper bound of Section
III.B for the first-order Markov hopping patterns and My = Py for all k.

The approximation 5; (for both cases (1) and (ii) and the bound Fﬁ

are evaluated for J = 4. It turns out that they are rather insensitive to
increases in J as long as J 2 4, Values for ?A are given in Table 2(a) for (i)
constant fading and (ii) independent fading. The notations in) and 5}11),

respectively, are used for these two cases. Independent-fading turns out to be

the most favorable case although the difference is less than ten percent. Also notice




Table 2. Bit error probability for nonselective Rayleigh fading.

a) K=35, q =100, and Nb = 10

= 5 s(i1) s({) s 5
8/No (dB) PL PA PA pU PA PU
6 1.64 1.71 1.72 1.72 1.74 1.82
8 1.19 1.25 1.26 1.27 1.28 1.37
10 8.41 8.95 9.02 9.09 9.21 10.14
12 5.80 6.29 6.36 6.44 6.54 7.52
15 3.28 3.73 3.81 3.90 3.97 5.01
20 1.37 1.78 1.87 1.97 2.02 3.10
© 0.44 0.83 0.92 1.02 1.06 2.16

b) K =10, q = 1000, and N, = 10

b

8/N0 (dB) P Py Py PU
6 1.67 1.68 1.69 1.70

8 1.20 1.22 1.22 1.24

10 8.35 8.51 8.54 8.74

12 5.65 5.79 5.82 6.04

15 3.05 3.18 3.20 3.44

20 1.07 1.20 1.22 1.46

w 0.10 0.23 0.24 0.49

c) K = 15, q = 1000, and Nb = 10

E/N0 (dB) By By P,
6 1.66 1.69 1.70

8 1.20 1.23 1.23

10 8.36 8.60 8.65

12 5.67 5.90 5.94

15 3.08 3.30 3.33

20 1.12 1.33 1.35

® 0.16 0.36 0.38
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that the bound Fﬁ (common for both cases) differs from FA of (1) or (ii) by

at most twenty percent; therefore, in Tables 2(b) and 2(c) we present data on
Fﬁ only (not on 5;). The purpose is comparison with §L’ P , and PU. In
comparing Eh and %A we note that iA appears to be an upper bound for the
nonselective Rayleigh case. Also the results of Table 2(c) show that for

q = 1000, K = 15, N, = 10, and §/N, < 20 dB the results of the Table show that
P,S1.17%, %, < 1.37; and B
for the data provided in Tables 2(a) and 2(b). As a final comment we point out

< 1.52 Fﬁ. Similar observations can be made

that since the approximations FA and the bound PU

to the true probability of error, their favorable comparison with the simpler

are expected to be very close

bounds %L and P, and the approximation.% strongly suggests the use of the

U A
latter for the design of SFH/SSMA systems.

e s m e b 5o e e




V. SELECTIVE FADING
In this section we consider a general wide-sense stationary uncorrelated-
scattering (WSSUS) fading channel. This model is described in detail in [1]
and [8, Ch. 9] and is employed in the analysis of direct-sequence SSMA
comminications over fading channels in [4]. We assume that fc >> qA', so
that narrow band signal models can be employed. The input to the k-th channel

is sk(t -Tk) where

5, (t) = Re{x, (t)exp(J 2mf ¢ )} (64)
and

%, (€) = V2P exp{(2m [b (£)A+ £, () [e+6, (£) +a, (£))}. (65)
The corresponding output is yk(t -‘rk) where

Y (E) = yosk(c)+Re{uk(t)exp(j2ﬂfct)} (66)

and

w(t) =y, [ b (e,m)x (e-m)dr , (67)

so that the received signal for this channel is given by (9).

If Yo = 1 then there is a (non-faded) specular component present in the
output of the channel, and the channel is a kician fading channel (as in [4]).
In this case Yi plays the same role as the parameter Yz of Section I1I. 1If
Yo " 0 there is no specular component, and the channel is a Rayleigh fading
channel. In this case yi plays the same role as the parameter u, of Section

Iv.

b e iy e e s




The fading process hk(c,f) (which can be thought of as the time-varying
impulse response of a lowpass filter) is a zero-mean complex Gaussian random

process with autocovariance
E{h, (£,7)hE(s,0)} =p (£ -8,7)6(r =0) , (68)

where § (+) is the Dirac delta function and

(-]

[ ppOmar =1 .

-
Two special cases of the model considered in [1] and {4] are the purely
time-selective and purely frequency-selective WSSUS fading channels (see
also [2] and [3]).

In the present paper we consider a somewhat more general model which is

both time and frequency selective. This is a special doubly-dispersive model

that is characterized by

pk(t'S,T) = rk(t‘s)gk("') . (69)

If gk(r) § (r) the channel is not frequency selective. 1If rk(g) =11t 1is
not time selective.
As usual ({11-(4]), some limitations are imposed on the selectivity

of the channel. First it is assumed that
g (1) ~ 0 for =] > T, (70)

which is a constraint on the frequency selectivity of the channel that allows

us to restrict attention to the intersymbol interference from the two adjacent
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data bits. This assumption can be relaxed, but the error probability
computations become more difficult. The second assumption is that two
signals which are transmitted at different frequencies have non-overlapping
spectra at the receiver. This is primarily a limitation on the time
selectivity of the channel, but it also is related to the spacing A.

The analysis of the receiver follows that of Section IV, so many of the
details are omitted. The output of the in-phase component of each of the

two branches of the i-th receiver is

Zc,m = YO(I)c,m+ Ic,m) + (P/S)!E

a(k,1)
T(yti,m+kiiykIc,m YN, . 7y

The terms D 1 , and NC are as in Section IV if we replace A(i)

c,m’> “c,m ,m )

by 1 and QEi) by 0. The terms Fc and f(k’i)

are (normalized) faded
, c,m

versions of the desired signal and the multiple-access interference due to

the k-th signal. These terms are defined for the A-th decision bit

o= ij+p) by

Fc,m = Re(Fm) (72)
and

2(k,1) = ~(k,1)

Ic’m Re(Im ), a3
where

. . DT a

Fo=T o Lhi(:,f)ni’m(c,f)exp[”i(:,T)]mdc (74)
and

- - Q+)T =

Iék,i).'rl 2 Lhi(t-frk,*r)nk’i,m(t,'rk+'r)exp[j¢k’i(t,rk+'r)]d'rdt.

(75)

In (74) and (75) the functions hk {m and ¥ 4 are given by
bl ’ ?

4
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ﬂk,i,m(t,'f) =§ [fk(t 'T)’fi(t)]5 [bk(t 'T)sm] (76)

and

Vi i(t:,'r) =-2n[fc+bk(t -T)A+ fk(t -l +ek(t -T)+dk(t -T) -Bi(t). an

The functions ni,i, and wi,i are denoted by ni’m and o respectively.

m

Notice that %m is nonzero if and only if both fi(t -T) = fi(t) and

bi(t -7) = m for some t and v (similarly for i;k’l)). This is a result of
our assumption for the time-selectivity of the channel and the size of A.

In the analysis below, the expectations and probabilities are conditioned

on bék) and Tk for 1 < k< K. However, the error probabilities that are

obtained do not depend upon Ty OF b;k) for k # i. So in the last step we
only have to average over béi).

A. WSSUS Rayleigh Fading Model (yo = ()

The bounds of (32)~-(34) and the approximation of (35) are employed

except that fading must be accounted for in PO and P. For Yo = Q0 and K = 1,

yA is the sum of two random variables ((P/S)%T F and N_ ) of which
c,m c,m c,m

the first is conditionally Gaussian and the second is Gaussian. Furthermore,

it is not hard to see that Zc 1 and Zc .1 are conditionally independent, and
b}

so are Zs 1 and Zs,-l‘ Since O m =% o then [8, p. 587]

s 3 ]

2

2 -1
c,~1 )

P =g ac,-l

e,0 (78)

2
(crc’l+

is the conditional probability of error given there are no hits where

2 2 2 )
o, o = (PT /8)71 Var{Fc’m) + NgT/16 . (79) .




It is convenient to normalize 0‘2: n and write (78) as

-1
Pe’o = V-I(V1+V-1) (80)
- 2
where v is given in terms of § = Yg PT by
= -1
v, =2 Var[Fc’m} + (J/No) (81)

The expression for Var{Fc m} depends on the position of the data bit within

the interval [jTh,(j+1)Th). For the p-th bit of the j-th hop (A = ij+p) de

define 6 = §(1l,m), 6;1 = a(b(i')_l,m), and 6; = 6(b{ii,m). Let
=2 Y
H (v) = 2T j‘o (v - w)z, ()du, (82)
and define
T
F; = J‘o g; (T)H, (r)dr, (83a)
. T
F, = J‘O g (T)H, (T -7)dr, (83b)
and
-2 T T Terx
G =T Io g; (r) j‘o J‘o r, (t-s)dtds . (83c)

The following expressions for Vat{Fc m} are derived in the Appendix.

First for p = 0 we find
= 4 F
Var{Fc’m} s;[(a;nﬁq)ri +2 F, + um(a;+5q)ci] . (84)

For p = Nb -1 (84) is valid provided we replace 5;’1 by 6;. Finally, for

0<p«< N, - 1, the expression is

var(F_ 1 = X[ +8mF, + 26 F, + 25 (61 +6M6,1 . (85)




For the first-order Markov hopping patters and the RS hopping patterns the
quantity 6q that appears in (84) is identically 0. For the sequences of
independent random elements éq is a random variable with P{6q=-l} = q-1 and
P{s =0} = l-q-l .
q

Notice that for 0 < p < Nb"l (i.e. for the internal bits of each
dwell interval), Var{Fc’nJ does not depend on the hopping pattern.
It turns out that the average probability of error for these bits
(0<p< Nb-1) is larger than that of thé first and last bits (p=0 and
p==Nb -1). Thus we use (85), and not (84), in order to obtain an upper bound
on P0 which applies for all values of p. As a consequence of using (85), we
obtain a bound on PO which does not depend on the hopping pattern.

In order to obtain the limiting error probability (as the chaanel becomes
nonselective) it suffices to let giQr) = §(r) and ri(u) = 1. We then have
F, =G

= 0 and i?i = % so that P is given by (41) with A = §/N, = yfp .

i i 0
Similarly, to obtain the irreducible error probability (as p —= ®) we simply

disregard the second term in the right-hand side of (81).
For the WSSUS Rayleigh fading model we say that a hit occurs from the

k-th signal whenever Ti? bk(t), and (t) are such that Var[fék;i)} ¢ 0.

£
The probability © of such a hit depends upon Ny and q. For the first-

order Markov hopping patterns we have

A 3
PP N

%(u ) . (86)

In deriving (86) we used the fact that for the selective fading model used

in this section, as many as 4 adjacent bits from the k-th signal may
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interfere with each bit of the i~th signal. The expressions (25) and
(32)-(35) apply with  replaced by Pu and P0 evaluated as explained above.

For memoryless hopping patterns the corresponding result is

p<p &

u

A =

-1
[1+Nb a-21. (87)

Both bounds in (86) and (87) are tight for N, 2 3. For the RS hopping

b

patterns the correspénding result is

1 1
PSPU-;_—l(li-ﬁ) . (88)

Notice that the bound in (88) is the same as in (23) which was obtained under
nonselective fading conditions. This is due to the fact that the RS hopping

patterns do not repeat within a period.

B. WSSUS Rician Fading Model (yo = 1)

In this case the conditional error probability given there are no hits

is (8, p. 587]

2 2 2 -1 2 2 2 2 -1

Pe,0 = %,-1Cc,1%%,.1) P~ ;4D )@, ;+9. 1. (89

Upon normalization, (89) reduces to
-1 2 -1
Pe,0 = V(v +V_ D) exp{-[yi(vlﬁ-v_l)] } (90)
where Vo is defined by
2 2 = -1
vo=2 Var{Fc’m] + (v 0y 8Ny T, (91)

E/No = (1-+Yi)p, and Var[l‘-’c nJ is given by (82)-(85). Finally in order to
?

i i
obtain Po we have to average Pe 0 with respect to the data bits (b{+i,b§_i).
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For Rician fading the hits from the k-th signal may occur from either
the direct-path component or the faded component. The probability of a hit
from the k-th signal due to the direct-path component is the same as for
nonselective Rayleigh fading (this was evaluated in Section III). The
probability of a hit due to the faded component is evaluated above (for
Rayleigh fading). The union bound provides simple upper bound on the

probability of a hit. This is given by

2 2
P <P == b —

for first-order Markov hopping patterns and

P 5P&-§-[1+é(1-%‘-)] (93)

~

for memoryless random hopping patterns. For RS hopping patterns P is

still bounded as in (88); that is,
P <P'=PR . (94)
u

By substituting for P, in (32)-(35) and replacing P by P& in (25) we have

0
lower bounds, an approximation and an upper bound on the average probability
of error,

In Tables 3 and 4 the approximation §A given in (35) is obtained for
purely frequency-selective Rayleigh and Rician fading channels, respectively,
The system parameters are K = 15, q = 1000, and Nb = 10. First-order Markov

hopping patterns are employed. The covariance function of the frequency-

selective channel is triangular, so that the rms multimath spread ¢ defined

[ J
by cz - I 72 g(T)dT is related to the parameter d of [3] by d = 2.22 0/T.
ih

We let v, = y for all k. Then in Table :s,'i>A is given as a function of

b it e m

wchialia »
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Table 3.

Table 4.

Bit error probability for Rayleigh frequency-selective fading
(K = 15, q = 1000, and Nb = 10).

§/N0 (dB) o=0.05T 0=0.1T 0=0,15T 0=0.2T
6 1.75 1.82 1.91 2.01
8 1.28 1.35 1.44 1.54
10 0.91 0.97 1.06 1.17
12 6.31 6.88 7.71 8.84
15 3.63 4.13 4.94 6.08
20 1.59 2.04 2.82 3.95
® 0.58 1.00 1.76 2.89

(x10_])
(x10_7)
(x10_3)
(x1075)
(x105)
(x105)
(x10 )

Bit error probability for Rician frequency-selective fading

(K = 15, q = 1000, NS = 10, and o = 0.05T).

E/N « 2 2 2
0 B) ¥'=.1 Y =.5 v“=1 ¥“=10 vy =1000
6 0.98 1.42 1.60 1.77 1.78
8 0.49 0.94 1.13  1.30 1.31
10 0.23 0.61 0.78 0.93 0.94
12 1.23 3.96 5.34 6.58 6.63
15 0.86 2.26 3.14 3.9 3.97
20 0.82 1.24 1.58 1.92 1.94
© 0.81 0.83 0.86 0.93 0.94

_—y
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E/N0 = (li-yz)p for ¢ = 0.05 T and for five different values of 72. Notice
that as yz -~ @ the probability }A is not the same as the second column of
Table 3. Although Po is the same in this limiting case, the fact that

Pu < P& (compare (86) to (92)) implies that the two cases give different
values of the bit error probability.

Finally we compare iA for nonselective and frequency-selective Rayleigh
fading for K = 15, q = 1000, and Nb = 10, (first-order Markov hopping patterns
are employed). From Tables 2(c) and 3 we see that the probability of error
for the frequency-selective case is, for glN0 = 12 dB and ¢ = 0,05, 1.1 times
that for nonselective fading, and it becomes 1.5 times the corresponding
probability for nonselective fading as 0 increases to 0.2 T. Similarly
for §/NO = 20 dB the ratio of the two probabilities ranges from 1.2 for

c=0.05T to 2.9 foro = 0.2 T.
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APPENDIX

In this appendix we develop the expressions for Var{Fc mJ' As in [4)

we can write Var{l-‘c,m} as

2 ~ ~*
var(r, 3 = E(Re{F J1° = 5 E[F F 1, (a-1)
where we used the fact that (1] E{hi(c,'f)hi(s,O)}- 0. Upon substitution for
(76), (68) and (69) in (A-1) we find

o= (1) (+1)T
Vat[Fc’m}sT j;gi(T) IM N MCDURMCRILNINCRS

exp{3l¥, (t,7) - ¥, (s,7)1}drdsdr . (A-2)

Notice that 'ﬂi m(t,T )‘ni m(s,'r) # 0 only for those t, s, and T for which the
b} ’

following three conditions hold: fi(c-T) = fi(t:), fi(s -T) = fi(s), and

bi(c -T) = bi(s =T) = m. But these three conditions imply ai(t -T) = ori(t:),

ari(s -T) = ai(s), 91“'*) = Bi(s -T), respectively. Also ai(c) = ai(s) =

orj(i) and B, (t) =B, (s) = ej(i) for t and s in [AT,(M+1)T). Comsequently,

wi(t,'l’) = vi(s,'r) for these values of t, s, and T. As a result we may let

exp{3(¥, (£,7) - ¥, (s,7)1} = 1

in equation (A-2).

The next step 1is to write (A-2) as

N, -1

@ p-1 b
var{F_ } = Z (d(0)Z A (A,n) + A (L,p) +d(4+1) A (L,n)] , (A-3)
c,m fmm 1m0 O a P - m




where for n # p

T -
Am(f.,n) = Io gi('r+£Th4nT)[ Am(l,n+1)F(1') + Am(l,n)F('f) +

2Am(2,n+l)Am(£,n)G(T)]dr, (A-42)

and for n = p

T -
Am(z,p) = Jo gi(T-l-R.Th'PpT)[ d(!.+1)Am(2,p+1)F(‘r) + d(i)Am(l,p)F(‘t) +

2d(241)d(2)4_(2,p+1)A (2,p)CG(T)]dt.

(A-4b)
In (A-3) - (A-4) we also need the definitions
- 1) (1) -
d(e) JCH £, (A-5)
L ()
Am(f-sn) G(b,\_sz_n9 m), (A-6)
and (cf. (82) - (83))
_p (ATHT (ATHT
F(t) = T I J ri(t-s)dtds - Hi(r), (A-7a)
AT AT
R o (LT ((A+1)T
F(t) = T I J ri(t-s)dtds = Hi(T°T) (A-7b)
AT+t AT+t
-2 AT+t ((A+1)T T (T
G(t) = T J J ri(t-s)dtds - I I ri(t-s)dtds. (A-7¢)
AT AT+t o’1

Notice that the result of (A~3) is quite general and it accounts for the
intersymbol interference due to many data bits. However, because of the
assumption (70) only the terms =0, n=0 and i=-1, n=N, -1 of (A-3) give

nonzero contributions, and thus (A-3) reduces to (84) -~ (85).




{1l

(2]

(3]

(4]

(5]

(6]

(7]
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APPENDIX B

ANALYSIS OF A SLOW FREQUENCY-HOPPED SYSTEM WITH POISSON TRAFFIC

In this section the packet error probability and the throughput rate

[N

are determined for a particular frequency-hopped system when the number
of packet transmissions in a slot is given by a Poisson random variable.
The packet error rate and throughput under the Poisson traffic assumption
are significant in view of the local Poisson approximation and recursive

retransmission control strategies discussed in the next section.

The system of interest is assumed to be packet-synchronized. A
sufficient time-guard-band must be maintained between packet slots to
maintain sychronization in the face of differential delays due to the
spatial distribution of the stations. Synchronization at the level of

bits or bytes is not assumed. 1

Each packet transmission is declared successful or not according to
some criteria (a specific choice 1is given below). The following defini-

tions will be used

r(mlk) = Pim successfullk packets transmitted in slot]

k
r(k) = Z m r(m|k)
m=0
and

P(k) = 1-r(k)/k.

Thus r(-|k) is the distribution of the number of successes, r(k) is the
s mean number of successes, and P(k) is the average probability of failure
for a typical packet, all given that k packets are transmitted in the slot.

Similarly, define

rP(mIG) = E[r(m]K) ]




I'P(G) = E[r(K) ]

and

PP(G) =]1- rP(G) /G

where K is a Poisson random variable with mean G. Thus rP(- IG) and I-TP(G)
are the distribution and mean of the number of successes and PP(G) is the
probability of failure of a typical packet, all given that the number of
transmissions in the slot is a Poisson random variable with mean G.

The specific FH system will now be described. The frequency spectrum
is divided into q freguency slots and the packets are divided into n bytes each.
Each byte is transmitted at a frequency chosen from the q frequencies with
equal probability, independently of the frequencies chosen for other bytes.
It is then appropriate to use a burst-error correcting code -~ we will
assume that a Reed-Solomon code is used. We will also assume that a
packet consists of exactly one codeword from a RS code for which up to t
byte errors can be corrected. This provides us with a natural definition
of a successfully transmitted packet. A packet is declared successfully
transmitted if at uiost t byte errors occur. Both the (31,15)-code (with
n= 31 bytes, five bits per byte, 15 information bytes and t =8) and the
(255,127)~code (with n =255 bytes, eight bits per byte, 127 information
bytes and t =64) will be considered.

In the following let A =G/q, so that A is the traffic intensity per

frequency slot. Also, P(k,q) and PP(k,q) will be written in place of

P(k) and PP(G) in order to make the dependence on q explicit. Finally,
let n(A,q) = X(l-PP(X,q))‘ Thus n denotes the average throughput per

frequency slot.




Assume now that byte errors are independent in the absence of multi-
access interference. This independence assumption is true for an additive
white Gaussian noise (AWGN) channel. The assumption is alsoc approximately
true for an AWGN channel with fading if q is so large that very few fre-
quency slots are hit by more than one byte for any packet, or if the fading
process of the channel model has a short correlation time compared to the
typical elapsed time between visits to a given frequency. Also, by inter-
leaving codewords, it is possible to approximately achieve the situation
with independent byte errors even for relatively slowly fading channels.

Now let 12 be the byte error probability in the absence of multi-
access interference. Then the byte error probability given that k

packets are transmitted in a slot is
2 1l,..k-1
Py 1-(1-(3-?)) (1-py) k =1)

If byte synchronization were possible, the term %---Ji in this expression
q

could be replaced by 1/q. By the assumed independence of byte errors in

the absence of multi-access interference and the memorilessness of the

random hopping pattern, the byte errors (including multi-access interference)

are condiiionally independent given k. Thus the packet error probability is ;?

n
i n-1i
P(k,@) = = (M p> (1-p,)
1=t+] 1 k k

which can be used to compute

oo -Xq k , :
Ppt,a) = 2 &2y Peic,q) g ‘i

k=1




and

n(A,q) = }‘(l‘PP()"Q))

which are the desired packet error probability and throughput per frequency
slot for Poisson traffic.
The computation of PP()\,q) (and hence also n(A,q)) simplifies in two

special cases: First, when q=1,
=A
PpA,1) = 1-e " (1-P(1,1))

since P(k,1) =1 for k # 2. This implies that

nQA,1l) = e (1-P(,1)).

That is, when q=1, the throughput is Ke-)‘ (which is the throughput for a

noiseless slotted-ALOHA channel) times the success rate in the absence of

multiple-access interference.
The second special case is obtained by letting q and G tend to infinity

with A =G/q fixed. The limiting packet error probability is then

P A,+42) = 1lim P_(A,q) = lim P(k,q)
P q+°° P q+°°
k -+

A=k/q

=2 2 @l a-py
i=t+l

n~i

where

=2
Po = lm p =1-¢2 (1-p)).
q+>
k +o0

A=k/q




Numerical results are given in Figs. 1-4 and in Tables 1-3. We see
in Fig. 1 that for no channel noise and using the (255,127) Reed-Solomon
code, a smaller packet error probability is achieved by q=+< than by
g=1 if and only if N is smaller than about 0.13. For an intuitive
understanding of this it is important to keep in mind the following two
facts. First, at the level of byte errors, the essential effect of varying
the parameter q is that as q decreases, the occurrences of byte errors
within a single packet become more positively correlated. Secondly, since
A is the traffic normalized per frequency slot, for fixed A the byte error
probability and therefore also the mean number of byte errors per packet
does not strongly depend on q. Summarizing these two facts, for larger q
the distribution of the number of byte errors tends to be more tightly
concentrated near the (almost q-independent) mean number of byte errors.

Thus, whether or not the packet error probability is smaller for large
q than for small q is determined by whether or not the error correcting
capability of the code can accomodate any number of byte errors 'mear"
the mean number of byte errors. Since the mean number of byte errors
increases with A, it follows that for small enough A the packet error
probability is smaller for large q, and conversely for large A the packet
error probability is smaller for small q.

When the byte error probability in the absence of multi-access
interference P is increased from zero to 0.1, the packet error probability
does not significantly increase for q=1 while it does for larger values
of q. (Compare Figs. 1 and 2.) As a result, the value of A at which the
packet error probability for q = surpasses the packet error probability
decreases to A =0.078. (See Fig. 2.) Thus in the presence of channel noise,

the crossover value of A can become quite small.

A




Turning to Figs. 3 and 4 we observe that the maximum throughput (over
all 1) is much greater for q=1 than for q=>. However, the maximum
throughput for q=1 can only be achieved by maintaining a mean traffic
intensity A =1 which causes the packet error probability to exceed .63.
Hence, although q=1 offers greatly increased maximum throughput, the
increage comes at the expense of either many retransmissions (which, if

possible at all, generally increase delays) or a high packet loss rate.

Discussion of Method

The method of using the local Poisson approximation as discussed here
and in the next section is admittedly only an approximation. It is impor-
tant to emphasize however that, as shown in [7], the method does lead to
channel stability (even taking approximations into account).

Another approach to the analysis of delay in a random-access system
would be to use a more detailed model of the transmitters -- allowing them
to obtain multiple packets and then buffer delay could be discussed. For
such analysis so far in the literature, the total system is usually
described as a (many state) Markov chain. For such analysis, the main
obstacle has been the large size of the state-space. Here we wish to
point out another difficulty which arises for such detailed analysis when
one considers spread-spectrum systems. The problem is that a detailed
exact analysis would require knowledge of the conditional distribution
r(+| k) of the number of successes given k transmissions (whereas our
analysis only required use of the mean number of successes). Some authors
propose (implicitly) that the distribution of the number of successes is
binomial under the assumption that the outcomes of transmissions of distinct
packets form independent events. It is clear, due to the mutually destruc-

tive effect of collisions that this assumption is not true.




In summary -- before more detailed models can be effectively used,

the distribution r(-]k) must be better characterized. Nevertheless, we
have found retransmission control schemes which insure stable throughput,

even without knowledge of this distribution (see next section).




Table 1. Packet error probability and throughput vs. traffic-intensity-per-
frequency-slot A for q=1 (no hopping during packet transmission).
q=1 Py = 0.0 pp = 0.1
Either Code RS-(31,15) RS-(255,127)

A Pel-e™ n P=l-e(.9974) 1 P=l-e(1-1.2¢10"1%) n
0.00 0 0 .0026 0 1.2x10712 0
0.02 .0198 .0196 .0223 .0196
0.04 .0392 .0384 .0417 .0383 Same as columns for
0.06 .0582 .0565 .0607 .0564 Py = 0.0
0.08 .0768 .0738 .0793 .0737
0.10 .0951 .0905 .0975 .0902
0.12 L1131 .1064 L1154 .1062
0.14 .1306 L1217 .1329 L1214
0.16 .1479 .1363 .1501 .1360
0.18 .1647 .1503 .1669 .1500
0.20 .1812 .1637 .1834 .1633
0.25 L2212 .1947 .2232 .1942
0.30 .2592 .2222 .2611 .2216
0.40 .3300 .2681 .3314 .2674
0.50 .3934 .3032 .3950 .3025
0.60 L4512 .3293 .4526 .3284
0.70 .5034 .3476 .5047 .3467
0.80 .5501 .3595 .5518 .3585
0.90 .5934 .3659 .5945 .3650
1.0 .6321 .3679 .6331 .3669
1.5 .7769 .3347 7774 .3338
2.0 .8646 .2707 .8650 .2700
2.5 .9180 .2052 .9181 2047

L T

e e



Table 2.

Packet error probability and throughput vs. traffic-intensity-~
per-frequency-slot A for q = 10 frequency slots.

=10 Py = 0.0 P = 0.1
RS-(31,15) RS-(255,127) RS-(31,15) RS-(255,127)
by P n 4 n P n P n
-12

0.00 0 0 0 0 .0026 0 1.24X10 0
0.02 .0335 .0193 .0185 .0196 .0958 .0180 .1386 0172
0.04 .0820 .0367 .0632 .0375 .1864 .0325 .2599 .0296
0.06 .1400 .0516 .1240 .0525 .2725 .0436 . 3655 .0381
0.08 .2031 .0637 .1934 . 0645 .3531 .0517 4571 L0434
0.10 .2684 .0731 . 2664 .0733 L4274 .0572 .5364 .0464
0.12 .3335 . 0800 .3395 .0792 .4953 .0606 .6047 0474
0.14 .3968 . 0844 L4102 .0825 .5568 .0620 .6635 0471
0.16 4572 .0868 .4769 .0837 .6121 .0620 .7140 .0457
0.18 .5140 .0874 .5388 .0830 .6615 .0610 .7572 .0437
0.20 .5667 .0866 .5955 .0809 .0753 .0589 .7942 0411
0.25 .6801 .0800 .7138 .0715 .7937 .0515 .8645 .0339
0.30 .7983 .0695 .8010 .0595 .8574 .0428 .9113 .0266
0.40 .8835 .0465 .9080 .0365 .9337 .0265 .9626 .0150
0.50 .9438 .0280 .9597 .0201 .9700 .0150 .9845 .0078
0.60 .9737 .0157 .9827 .0104 .9860 .0079 .9936 .0038
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Fig. 1.

Block error probability vs. traffic-intensity-per-frequency-slot A.
No channel noise (pl-O). For q=1, curves coincide,.
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Fig. 2.

Block error probability vs. traffic~intensity-per-frequency-slot A.
Independent byte errors -- error probability pl-O.l.
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Fig. 3. Throughput vs. traffic-intensity-per-frequency-slot A. No channel
noise (pl = Q). For q=1, curves coincide.
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Throughput vs. traffic-intensity-per-frequency-slot A. Independent
byte errors =-- error probability pl-O.l.




APPENDIX C
RECURSIVE RETRANSMISSION CONTROL -- APPLICATION TO
FREQUENCY~HOPPED (FH) SPREAD-SPECTRUM SYSTEMS
Although the models of the user population and the feedback information

are quite simple, the concepts of [5)-[7] readily extend to more complex and

realistic settings. In order to illustrate this point, we shall briefly
describe how the decentralized dynamic control procedure in [5] can be adapted
to the frequency-hopping system described in the previous appendix. For
definiteness, suppose that the Poisson model in [5] is used to describe how
the population of stations acquires packets to be transmitted.

Our research has shown that it is desirable for the users to have some
feedback information in order to suitably control the traffic level. We
shall now describe a method for the users to obtain such information which
is appropriate for use in the Navy's ITF network. Du;ing each slot, user a
uses a random hopping pattern to hop a receiver among the q frequencies.
The pattern has the same distribution as patterns used to transmit péckets.

For each dwell time the user decides (by a simple threshold test) whether

or not the channel was free during that dwell time in the frequency monitored.
The user then simply counts the number of dwell times in the slot for which
it was decided that the channel frequency was not free. Let Y: denote the
count of user a for slot t. The variables Y: comprise the feedback infor-
mation upon which the retransmission control strategy described next is based.
Following (5], we suggest that user a recursively computes the sequence

f: via the multiplicative rule

a

ft+1

- min(f:a(Y:), 1) )

Then 1f user a has a packet to transmit, it transmits it in slot t with

probability £2. a possible choice for the function a is
t

v g teatas Lo
sev i et .




a) =1- & - 2"y )

where

* *
P =1~ exp(-2A)

*
and A 1is a desired value of the traffic intemsity per frequency slot.

To understand this choice of retransmission policy, note first that

if the number of packet transmissions in a slot is Poisson with mean

G=g)A, then the probability that a frequency slot is used during any portion

of a given one-byte dwell time is
p=1-exp(-2A)

When A -k*, p-'p*. That is, p* is the probability that a frequency is
occupied during a given one-byte dwell time when the number of packet
transmissions is Poissox:l with the desired mean-per-frequency-slot k*.

Now given the current values of the retransmission probabilities fz
for all a and given the set At of users which have a packet to transmit,
the conditional distribution of the number of packet transmissions in slot
t is approximately Poisson with mean
Gt-aEzA £2 + (4)

t
(where u is the rate at which new packets are transmitted) by the local

Poisson approximation described in (5] and {9]. Hence,

Q|
E [Yt:lft’ all a] = P, (5)

where

P, = 1 - exp(-2G,/q)

. T V)

Bt il n .-




Thus by (1) and (4),

o o1 a a
E[G £, allal=E[ Z fta(Yt)+u|ft,alla]

e
€
“€A 4

=u+ I f£Ela@D|E], all o]
€A

and since (by (2) and (5))
o
Q0 t * o
E [a(Yt)lft, all a] = E [1-1(—q—- P )lft, all o]

= 1‘7(":"’*)
*
= 1+7(exp(-2Gt/q) - exp(~2G /q))

we have

(s ]

¢» all a)] = {1+7(exp(—2Gt/q)--exp(-2G*/q))}Gt

ElGylf

Hehce, G will tend to be larger than Gt (resp. smaller than Gt) if Gt is

t+l
*
smaller (resp. larger) than the desired traffic level G . That is, Gt will

tend to drift toward the desired traffic level G*.

Using the methods of [7] it can be shown rhat with this transmission
policy the channel is stable whenever the input rate u is smaller than the
average throughput rate qn(k*,q) corresponding to the desired traffic

*
intensity per frequency slot X\ .




APPENDIX D

ACKNOWLEDGEMENT BASED RETRANSMISSION CONTROL

In [9] we define and analyze the class gf Acknowledgement Based Retrans-
mission Control (ABRC) schemes for random access. Such schemes require nomore
feedback information than the original ALOHA scheme in that each user need
only learn whether or not its own transmission is successful. Such small
feedback requirements are desirable in a spread spectrum environment when

channel monitoring is difficult., On the basis of approximations developed

in [5] under this contract and an equilibrium analysis, we have found that
such schemes can provide satisfactory performance for both an infinite and
finite number of users, as long as the retransmission probabilities are |
properly chosen.

We also introduced the possibility that after a packet has collided a
certain number of times then it is rejected and no longer retransmitted.
It appears that the probability that a given packet must be rejected can
be kept to a satisfactorily low level, while allowing rejections improves
stability considerably. In Fig. 1 the average probability of success and

the probability of ultimate rejection P_ are given as a function of the

R
allowed number of retransmissions k for the infinite user model with input
rate A =0.3. For k=12 the probability of rejection is about one in ten
thousand. However if k is chosen to be too large then undesirable bistable

behavior appears.

! PR
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APPENDIX E

THE METHOD OF MARKOV PROCESSES WITH PHASES

Another area of progress under this contract has been the development
of a numerical technique, the "method of phases', which we have discovered
is suitable for evaluating certain random access algorithms in the presence
of fluctuating traffic rates. Our main motivation is that the usual
Bernoulli or Poisson models of arrival processes are not "bursty’ enough
to realistically model traffic which random access schemes are likely to
face in practice. So far the method has been successful for evaluation of
TDMA with buffered users and varying arrival rates. The method will now

be briefly described, following [8].

Consider a TDMA system with m users and arrival rate ¢ packets/slot/
user. Let Nt denote the number of packets in the first user's buffer and
let St € {1,...,m} denote which user is transmitting during slot t. @ is
the 'phase' of the system relative to the first user.) Then (Nt,et) can
be modelled as a discrete-time Markov chain on Z+ X {1,...,m] with transi-

tion matrix (in the following matrices, only non-zero entries are

indicated):
A0 21
A A A
- 10 2
A A 4
A A4

%
where the blocks of P are the mxm matrices




10

0 l-¢ T
l-¢
1 ° Ay =
l-c
l-¢ o 0
0 l-o
l-c
00 = ) 401 =
l-o
l-o l-g 0
- b -

In [8] a general method is presented for obtaining the invariant distribu-

tion of such chains. The general procedure is as follows [8]:

Step l: Compute B, where B is the minimum non-negative solution to
the equation

B = BA,BA,(I-4;) "+ (I-4))
©

Successive substitutions starting with B
sequence converging to B,

= 0 yields an increasing

Step 2: Find Ty the invariant distribution for the mXm tramsition
matrix P, = A . .+ AOIBAIO'

0 00
Step 3: Compute the constant
-1
c = no(I-FAOIB(I-R) e

where e = (1,1,...,1)T and R = Azn.

Then the invariant distribution for P* is x = (xo,xl,...) where

and

Xy = ﬂo/c

xk = xOAOIB k-1 kz1.




In {8] analogous results are also derived when P* is truncated to a finite
number of levels and boundary states are added. This provides a computa-
tionally tractable method to analyze queues with finite buffers.

Using this approach, the invariant distribution for the TDMA example has
been found analytically and numerically [10]. Our results, such as expres-
sions for the average backlog, agree with those obtained by other methals.
The advantage of this approach is that it readily extends to the case when
the arrival rate fluctuates according to an underlying Markov process, for
then the system still has the same form as above but for different choices
of the Ai's. This extension has been carried out and is presented in {10].

An example of our numerical results are presented in Fig 2. In
this example the number of users M was taken to be 4 or 10. 1In each case
the mean arrival rate was p = 96% of the channel capacity, and the actual
arrival rate fluctuated between two different arrival rates, where the
switching was governed by a two state Markov chain. The dashed lines
correspond to an example when both of the input rates were chosen below
the system capacity while the solid lines correspond to an example when one
of the two rates is above the system capacity. The curves give the average
backlog N for a given user versus v, where Yy is a parameter which indicates
how fast the rate is switched. For small vy the switching processes is
slow so that a large backlog results when one of the two rates is above the
system capacity (see solid lines).

Our reason for studying arrival processes with varying rates is that
we feel it provides a more realistic model of bursty traffic than does the
usual Poisson arrival model. We are now in the process of analyzing other
random access disciplines in the presence of varying traffic rates. We

suspect that many random access schemes will perform more favorably relative

to the performance of TDMA when the traffic arrival rates vary dynamically.




e SIS

l‘i In addition, we have found the method of phases developed in [8] under
this contract to be useful in the analysis of certain routing schemes in a
packet switched network [10]. (This portion of [10] was supported by a

JSEP contract.) An important product has been an increase in our under-

standing of the advantages and limitations in the use of Markov processes

with phases. We feel that it is an important and useful technique which #

will find many applications both within and beyond the multiple access area.
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Fig. 1. Average backlog of a user in TDMA system as a function
of the rate of traffic variatiom.




